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Abstract

Randomized experiments are increasingly used to study political phenomena because
they can credibly estimate the average effect of a treatment on a population of interest.
But political scientists are often interested in how effects vary across sub-populations—
heterogeneous treatment effects —and how differences in the content of the treatment
affects responses—the response to heterogeneous treatments. Several new methods
have been introduced to estimate heterogeneous effects, but it is difficult to know if a
method will perform well for a particular data set. Rather than use only one method,
we show how an ensemble of methods—weighted averages of estimates from individual
models increasingly used in machine learning—accurately measure heterogeneous ef-
fects. Building on a large literature on ensemble methods, we show how the weighting of
methods can contribute to accurate estimation of heterogeneous treatment effects and
demonstrate how pooling models leads to superior performance to individual methods
across diverse problems. We apply the ensemble method to two experiments, illumi-
nating how ensemble method for heterogenous treatment effects facilitates exploratory
analysis of treatment effects.
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1 Introduction

Experiments are increasingly used to test theories of politics and political conflict (Gerber

and Green, 2012). Experiments are used because they provide credible estimates of the

effect of an intervention for a sample population. But underlying this average effect for a

sample may be substantial variation in how particular respondents respond to treatments:

there may be heterogeneous treatment effects (Athey and Imbens, 2015). This variation may

provide theoretical insights, revealing how the effect of interventions depend on participants’

characteristics or how varying features of a treatment alters the effect of an intervention.

The variation may also be practically useful, providing guidance on how to optimally ad-

minister treatments (Imai and Strauss, 2011; Imai and Ratkovic, 2013), or it may be useful

for extrapolating the findings of an experiment to a broader population of interest (Hartman

et al., 2012). Further scholars are increasingly making use of experimental designs with many

conditions, in order to examine how differences in treatment content affects response—the

effect of heterogeneous treatments (Hainmueller and Hopkins, 2013; Hainmueller, Hopkins

and Yamamoto, 2014).

A growing literature has contributed new methods for estimating heterogeneous effects

and the effects of heterogeneous treatments (Hastie, Tibshirani and Friedman, 2001; Imai

and Strauss, 2011; Green and Kern, 2012; Hainmueller and Hazlett, 2014; Imai and Ratkovic,

2013; Athey and Imbens, 2015). Each of the methods provide new and important insights

into how to reliably capture heterogeneity in treatment response or how individuals respond

to high dimensional treatments. For example, Ratkovic and Tingley (2017) provide a sparse

estimation strategy for identifying heterogeneous treatment effects. To identify systematic

variation in treatment response and to separate it from variation due to simple randomness

each of the new methods combines information in the data with necessary and consequential

assumptions about the data generating process (Hastie, Tibshirani and Friedman, 2001).

While the assumptions are often minimal and designed to maximize a method’s flexibility, it

is difficult to know before hand if a method’s particular assumptions fit any one application
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well.

Rather than rely on a single method to estimate heterogeneous treatment effects, we show

how a weighted average of methods for estimating heterogeneous effects—an ensemble—

provides accurate estimates across diverse problems. We build on the ensemble method

super learning (van der Laan, Polley and Hubbard, 2007), using a cross-validated measure

of prediction performance to weight the contribution of methods to the final estimate of

heterogeneous effects and show the close relationship of super learning to other ensemble

methods (van der Laan, Polley and Hubbard, 2007; Hillard, Purpura and Wilkerson, 2008;

Montgomery, Hollenbach and Ward, 2012). Weighting based on out of sample performance

is useful, we show, because methods that tend to perform well in cross validation prediction

tasks also accurately estimate heterogeneous effects. Using Monte Carlo simulations we

show that the ensemble outperforms constituent methods across diverse problems because the

ensemble attaches greater weight to methods that have better estimates of the heterogeneous

effects for the particular task at hand and that each method’s performance varies across

contexts.

We apply the ensemble method to two experiments that examine how constituents eval-

uate how legislators’ claim credit for particularistic spending in the district and criticism of

those credit claiming efforts (Mayhew, 1974; Grimmer, Messing and Westwood, 2012). In

both examples we use the heterogeneous treatment effect method for explicitly exploratory

purposes—to generate hypotheses useful for future rounds of experimentation. The ex-

ploratory purposes, however, are useful for other applications of heterogeneous treatment

effect models: targeting particularly responsive subpopulations (Imai and Ratkovic, 2013)

and extrapolating treatment effects to new samples (Hartman et al., 2012). We also pro-

vide guidance on how to calculate standard errors for the heterogeneous treatment effects

and provide a new visualization to reflect the data underlying the heterogeneous treatment

effects. Our application of ensemble methods to the estimation of heterogeneous treatment

effects builds on a growing literature in political science that uses super learning methods
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to improve inferences, including making more plausible comparisons in observational studies

(Samii, Paler and Daly, 2017).

In our first application we show how ensembles can be used to estimate the response

to heterogeneous treatments, facilitating an examination of how constituents evaluate credit

claiming messages. Our results suggest that constituents focus on easily acquired information—

such as the type of project the legislator claims credit for, rather than the amount of money

allocated to the project. In our second application we show how ensembles can be used

to model heterogeneity in response to a treatment, revealing ideological heterogeneity in re-

sponse to criticism for government expenditures. In both examples the ensemble of heteroge-

neous treatment effect methods suggests new hypotheses to be tested in future experiments,

where we can explicitly use a pre-analysis plan to test the variation.

Throughout the paper we explain that ensembles are useful because they are flexible

and can be tuned to the particular problem at hand. They are also useful because they

ensure that we make full use of impressive methodological innovations in the estimation of

heterogeneous treatment effects. As we explain in the conclusion, ensemble methods are

best conceived of as a companion to new constituent methods: better individual methods

for estimating heterogeneous effects will lead to better ensemble estimates and the ensembles

provide a new method for evaluating individual methods for estimating heterogeneous effects.

2 Experiments and Conditional Average Treatment Ef-

fects

We follow a large prior literature and formalize the estimation of heterogeneous effects using

potential outcome notation (Holland, 1986; Green and Kern, 2012; Imai and Ratkovic, 2013)

and also borrow some notation from recent work on the analysis of conjoint experiments

(Hainmueller, Hopkins and Yamamoto, 2014). Suppose that we have a sample of N , (i =

1, . . . , N) individuals from a population P . We suppose that there are C (c = 1, 2, . . . , C)

factors in the experiment and in each of the factors participants are randomly assigned to

one of Kc conditions and that there is also a control condition. Participant i’s condition
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will be given by T i = (Ti,1, Ti,2, . . . , Ti,C) if assigned to a treatment condition and otherwise

Ti = 0. We will denote respondent i’s response to condition T i with the potential outcome

Yi(T i).
1 We will analyze dichotomous dependent variables, though the ensemble methods

generalize easily to continuous or other dependent variables.

To measure the effect of an intervention for the entire population of interest, scholars

commonly report an Average Treatment Effect (ATE) across two conditions. For simplicity,

we will compare the effect of some treatment condition T i to the control condition Ti = 0,

though comparisons of any two treatments are possible. We will write the ATE as,

φ(T ) = E[Y (T )− Y (0)]. (2.1)

Randomly assigning participants to arms of the treatment ensures that the φ(T ) is identified,

which is commonly estimated with a difference in means across conditions.

The ATE measures the effect of the intervention over the entire population, but to mea-

sure how treatment effects vary across respondent characteristics we will estimate a con-

ditional average treatment effect (CATE) (Imai and Strauss, 2011; Green and Kern, 2012;

Imai and Ratkovic, 2013). The CATE, measures the average treatment effect for respon-

dents who share a set of characteristics. To formalize this definition, suppose that for each

respondent i we collect J covariates (j = 1, 2, . . . , J), X i = (Xi1, Xi2, . . . , XiJ), with values

of the covariates collected in the set X . We can then define the CATE for covariate profile

x ∈ X , and treatment arm T as φ(T ,x),

φ(T ,x) = E[Y (T )− Y (0)|X = x]. (2.2)

A treatment effect is heterogeneous if the value of Equation 2.2 varies as we consider different

strata of participants. As before, random assignment to treatment conditions is sufficient to

identify the CATE.

1We make the usual SUTVA assumptions, which are particularly likely to hold in our survey experiments.
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The CATE measures the effect for respondents who share identical values of all J covari-

ates. We may be interested, however, in how responses to the treatment effect vary across

a subset of covariates, a single covariate, or a single factor. Suppose that we are interested

in estimating the marginal effect of a subset of covariates XS = (Xs1 , Xs2 , . . . , XS). Define

the marginal conditional average treatment effect MCATE for covariates XS and treatment

conditions T , φ(T ,xS),

φ(T ,xS) =

∫
φ (T , (X1, X2, . . . ,XS = xS, . . . , XJ)) dFX−S |XS=xS

=

∫
E [Y (T )− Y (0)|(X1, X2, . . . ,XS = xS, . . . , XJ)] dFX−S |XS=xS

(2.3)

And finally we define the marginal average treatment effect (MATE) for factor c as

φ(Tc = k) as

φ(Tc = k) =

∫
φ(T )dFT−c|Tc=k (2.4)

=

∫
E [Y (T )− Y (0)] dFT−c|Tc=k

where FX−S |XS=xS
is the joint distribution of the covariates X−S, given that XS = xS and

dFT−c|Tc=k. In words, Equation 2.3 shows that MCATEs are averages of CATEs, where the

value of the covariate of interest is fixed and FX−S |XS=xS
is used to weight other covariate

profiles and Equation 2.4 shows that MATEs are averages of ATEs and FT−c|Tc=k is used to

weight the treatment profiles.

This notation corresponds to well known quantities of interest scholars commonly com-

pute. For example, when applying a parametric bootstrap, such as Clarify, it is common to

set variables other than the covariate of interest to the sample means to estimate marginal

effects (King, Tomz and Wittenberg, 2000). This is equivalent to FX−S |XS=xS
to place all

probability on the sample means and zero elsewhere. It may be possible to estimate the

joint distribution, facilitating extrapolation from the sample population to some other sam-

ple or population (Hartman et al., 2012). And finally, we may average over all other possible

covariate values—for discrete random variables—or a grid of values for continuous random

variables. This is equivalent to setting FX−S |XS=xS
to a uniform distribution.

6



3 Estimation of Heterogeneous Treatment Effects with

a Weighted Ensemble of Methods

When there are a large number of observations in each condition and participants who share

the same set of covariates, then reliable estimation of ATEs, CATEs, MATEs, and MCATEs

is straightforward. The random assignment of participants to treatments ensures that a

difference in means across treatment arms will reliably estimate the ATE and a difference in

means across arms among respondents with the same set of covariates provides an accurate

estimate of CATEs and MCATEs. With a large number of participants, the differences

computed with näıve differences in means will tend to reflect systematic differences (Gelman,

Hill and Yajima, 2012).

But for more heterogeneous treatments with a large number of conditions, or covariates

that have few observations who share the exact same covariates, a simple difference in means

will be a less reliable estimate of the effect of treatments. When the sample size is relatively

small, näıve differences will be likely to reflect random variation in the sample, rather than

systematic differences in the underlying methods because there will be few observations who

share the exact same characteristics. This renders ineffective the usual method for estimating

heterogeneous treatment effects: computing a difference in means for observations with the

same covariate value. It also makes simple comparisons of different levels of high-dimensional

treatments highly problematic.

The goal in estimating heterogeneous effects is to separate the systematic responses from

differences solely due to chance of the random assignment. Several new methods provide

novel ways to identify the systematic effects. Each method m estimates the response surface

for any treatment k and covariates x,

gm(T ,x) = E[Y |T ,x] (3.1)

and quantities of interest are computed by taking differences across the response surfaces.

To estimate Equation 3.1 each of the methods vary necessary and consequential as-
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sumptions about how treatment assignment and covariates alter the response surface. For

example, one approach to estimating heterogeneous treatment effects is to use regression

trees (Imai and Strauss, 2011) and Bayesian Additive Regression Trees (BART) to estimate

CATEs and MCATEs (Chipman, George and McCulloch, 2010; Green and Kern, 2012). The

trees subdivide the data repeatedly, developing decision rules to split the data to make more

accurate predictions. An ensemble of the trees is then used to model the response surface

and estimate the heterogeneous effects. Other methods start from a more familiar regression

framework and then use data and assumptions to identify systematic differences. For exam-

ple, LASSO methods use a penalty to shrink some coefficients to zero (Hastie, Tibshirani and

Friedman, 2001; Athey and Imbens, 2015). Imai and Ratkovic (2013) extend and generalize

LASSO, introducing a model that has two different penalties—one for covariates and another

for variation in treatment effects. A different, though related, approach is to impose a model

that shrinks the coefficients to a common mean, allowing only the strongest coefficients to

take on distinct values (Gelman et al., 2008). Hainmueller and Hazlett (2014) extend this

idea further and include a much more flexible modeling approach with Kernel Regularized

Least Squares (KRLS) and prove useful statistical properties of the algorithm.2 And still

other methods balance between the two types of smoothing. Elastic-Net is a method that

includes penalties that both shrink to zero and shrink to a common mean, with the weight

attached to each penalty determined by a parameter α, 0 < α < 1 (Hastie, Tibshirani and

Friedman, 2001).

Each of the methods have been shown to perform well on important political science

examples. Yet, knowing the ideal method to apply in any one experiment requires knowledge

about the data generating process that assumes the heterogeneous effect sizes are known—

exactly what we set out to estimate. For example, Imai and Ratkovic (2013) impose a

sparseness assumption, using a method that identifies a set of treatments and covariates that

have no effect on the response surface. In contrast, Hainmueller and Hazlett (2014) assume

2Both KRLS, Find It, and other methods discussed here have applications that extend well beyond
measuring heterogeneous treatment effects
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the estimates are more dense, smoothing many of the coefficient estimates to approximately

the same value (Hastie, Tibshirani and Friedman, 2001).

The appropriateness of those modeling assumptions will vary across substantive prob-

lems. New and diverse methods, then, are essential for estimating accurate heterogeneity

in treatment effects. But relying on a single method will result in sub-optimal performance

across diverse problems. When the assumptions fit the data generation process, the model

will perform well, but when the assumptions are a poor fit the method will perform poorly.

In place of using a single method to estimate heterogeneous effects, we argue for a

weighted ensemble of estimators. As we show below, we use a weighted ensemble because it

tends to attach the greatest weight to the methods that perform best at the task at hand

(van der Laan, Polley and Hubbard, 2007). Asymptotically ensemble methods will select the

best performing methods for a particular problem from the collection of methods (van der

Laan, Polley and Hubbard, 2007). We show in simulations that in a finite sample ensembles

lead to better estimates, as measured by root mean square error. Ensembles are also useful

because they can estimate more complex functional forms than the underlying methods.

And ensembles make estimates more robust—limiting the possibility that a coding error in

any one method could lead to invalid conclusions (Dietterich, 2000).

3.1 Constructing the Ensemble via Super learning

The ensemble estimator we utilize is a weighted average of heterogeneous treatment effect

estimators, where the estimators out of sample performance will determine the weights.

To construct this weighted average, we use the cross validation based methodology super

learning introduced in van der Laan, Polley and Hubbard (2007), a method that we show

in the online Appendix is closely related to other ensemble methods (Raftery et al., 2005;

Montgomery, Hollenbach and Ward, 2012). Ensembles of methods are increasingly used for

diverse problems including supervised text classification (Hillard, Purpura and Wilkerson,

2008) and prediction (Raftery et al., 2005; Montgomery, Hollenbach and Ward, 2012; van der

Laan, Polley and Hubbard, 2007). Both classification and prediction tasks are closely related
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to the estimation of heterogeneous treatment effects. In classification and prediction, the goal

is to estimate a function such as g(T ,x), in order to make an out of sample estimate about

a document or future observation. Heterogeneous treatment effects share a similar goal, but

take the difference between response surfaces to estimate the heterogeneous effects. As in

classification and prediction, identifying features—covariates and treatment assignments—

that systematically affect the response surface will improve our estimates of the quantities

of interest.

To construct the ensemble, assume we include M models (m = 1, 2, . . . ,M) for estimating

heterogeneous effects. For each method m we will define its estimate of E[Y (T )|T ] = gm(T )

and E[Y (T )|T ,x] = gm(T ,x). Along with the M models, we will suppose that we have a

set of weights attached to each of the models w = (w1, w2, . . . , wM). We will assume that

all weights are greater than or equal to zero (wm ≥ 0 for all m) and the weights sum to 1

(
∑M

m=1wm = 1).

With the weights and models, we define our ensemble estimate of the ATE for condition

T as φ̂(T ),

φ̂(T ) =
M∑

m=1

wmgm(T )−
M∑

m=1

wmgm(0). (3.2)

Analogously, define the ensemble estimate for the CATE for condition T and covariates x

as φ̂(T ,x),

φ̂(T ,x) =
M∑

m=1

wmgm(T ,x)−
M∑

m=1

wmgm(0,x). (3.3)

In words, Equations 3.2 and 3.3 show that the ensemble creates a final estimate of a het-

erogeneous treatment effect by weighting the estimates of the heterogeneous effect from the

corresponding models. To estimate MCATEs we will take the appropriate averages over

CATEs, using a joint distribution to weight the averages and similarly we will estimate

MATEs by taking appropriate averages over the ATEs.

The ensembles that we use will weight the predictions from the component models. Fol-

lowing van der Laan, Polley and Hubbard (2007) we determine the weight to attach to each
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method using the component methods’ predictive performance as assessed using cross valida-

tion. Predictive performance (or classification) is used because methods that perform well at

individual classification are also likely to perform well at estimating heterogeneous treatment

effects. Intuitively, this occurs because a method that predicts individual responses well in a

cross validation will also tend to identify systematic responses to treatments and systematic

heterogeneity in response to treatments— the characteristics that lead to accurate estima-

tion of heterogeneous effects. The result is that methods that separate systematic features

that assist in prediction also identify systematic differences that represent heterogeneity.

Given the connection between performance in cross validation and accurate estimation

of heterogeneous treatment effects, we create our ensemble in three broad steps (van der

Laan, Polley and Hubbard, 2007). In order to weight methods by their cross validation

performance, we first generate out of sample predictions for each observation using each

of the component methods. To do this, we proceed as if we are performing D-fold cross

validation: we randomly divide our data into D subsets (d = 1, . . . , D).3 For each subset d,

we train all M component methods using the participants in the other D − 1 subsets, and

often using cross validation within each fold to select tuning parameters. In each step, we

set tuning parameters using whatever procedure we will use in the full data set. This might

involve additional cross validation steps within each fold. Then, we generate predictions using

the trained models and the participants’ in subset d’s covariates and treatment assignment.

The result of this procedure is an N ×M matrix Ŷ where entry Ŷim contains the out of

sample prediction for participant i from method m.

Second, we estimate the weights using the predictions from the folds of the cross valida-

tion. For each participant i we regress the true response, Yi, on the out of sample predictions,

(Ŷi1, Ŷi2, . . . , Ŷim). Specifically, we fit the model,

Yi =
M∑
i=1

wmŶim + εi (3.4)

3We use 10-fold cross validation below. If there are concerns about sample size, the number of folds can
be increased.
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where εi is an error term. To ensure that each wm are weights, we impose two constraints

on wm: that the weights sum to 1(
∑M

i=1wm = 1) and that the weights are greater than

zero (wm ≥ 0). Fitting this regression is a straightforward quadratic programming problem,

whose solution provides a set of weight estimates ŵ that we will use to produce our final

ensemble. A method’s weight will depend upon its accuracy in the cross validation folds and

the distinctiveness of the predictions (van der Laan, Polley and Hubbard, 2007).

In the third and final step we use the weights and the component methods to generate an

ensemble. We fit each of the component models to the entire sample, creating a prediction

function for each method m, ĝm(·). To create final estimates of interest, we generate synthetic

observations (Green and Kern, 2012), with covariates x and treatments T . For discrete

covariates we generate all unique covariate and treatment combinations. For continuous

covariates we vary over the range of the covariate. We then use the component methods to

generate estimates of the heterogeneous effects for each of the component methods. For each

synthetic observation i we obtain ĝm(T i,xi). We then use the estimated weights to create

a weighted average for each observation, φ̂(T i,xi) =
∑M

m=1 ŵmĝm(T i,xi). Using the per-

synthetic unit effects, we can then summarize the effect further, taking averages according

to appropriate weights. We summarize the steps of the process in Table 1.

Table 1: Super Learnings’s Three Steps to Generating Ensemble Estimates for Heterogeneous
Treatment Effects

1) Generate out of sample predictions for all N observations from all M component
methods using D-fold cross validation.
2) Estimate weights for each method based on its out of sample performance using a
constrained regression (or other procedure, see online appendix).
3) Fit each component model to entire sample and then weight estimates from model
using weights estimated in step 2. To construct the final estimates we weight each
stratum according to a set of weights from a target population.

The weighting procedure ensures that we can include many different kinds of methods,

even if those methods have closely related assumptions (van der Laan, Polley and Hubbard,

2007). The general advice is to include more methods in the ensemble. Additional, correlated
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predictions will be downweighted in the weighting step. And distinct methods will ensure

that different data generating processes are included in the ensemble. In general, adding

more models will improve the performance of the ensemble. Of course, we should not take

the position too far. Additional methods may add little in new information if correlated

with already included methods and might slow down the estimation procedure.4 If scholars

are in a position where they need to limit the number of included methods, we recommend

including methods that make different fundamental assumptions about the underlying data

generating process, rather than methods that have the same assumed underlying process but

different tuning parameters.

3.2 Inference for Heterogeneous Treatment Effect Estimates

An important goal when making an inference about heterogeneity in treatment effect esti-

mates or the effects of heterogeneous treatments is to have a measure of our uncertainty about

our estimate. In this section we describe three different approaches to making inference and

to convey to the reader the information underlying a particular inference. Before presenting

these methods, we address a major concern with applying heterogeneous treatment effect

methods: that they will facilitate fishing. Fishing occurs when researchers use a data set

to find “significant” findings and then report only those findings and neglect to report the

search used to obtain those findings (Humphreys, Sanchez de la Sierra and van der Windt,

2013). To avoid fishing, we suggest a sequential approach to using heterogeneous treatment

effect methods. Our preferred approach is to use the heterogeneous treatment effect methods

for exploration on an initial experiment and then conduct a follow up experiment explicitly

targeting the heterogeneity in treatment effects of interest or assessing the effect in groups

that are deemed to be particularly interesting.

This sequential approach, however, is not helpful if experiments are costly or researchers

would like to report uncertainty estimates before designing the next round of the experiment.

4Obviously the superlearner function will depend on the number of included methods, but we can perform
10-fold cross validation on a data set of 5000 synthetic observations using an ensemble of LASSO, two elastic
nets, bayesian GLM, and an SVM in 266.4 seconds on a Mac Pro with a 3.5 GHz 6-Core Intel Xeon E5
processor.

13



A similar sequential approach can be adopted in any one experiment by borrowing the notion

of a training/test set split from machine learning and applying it to experiments (For similar

applications of the training/test split applied to experiments, see Fong and Grimmer (2016);

Wager and Athey (2015)).5 To create a training set, researchers can randomly select a

subset of their data and use the methods described here to fit a model to the data and to

explore the results, finding interesting heterogeneity. Using the remaining data as the test

set, researchers would focus on the specific quantities of interest identified in the test set. If

researchers know the particular heterogeneity in the data they are interested in before hand,

there is no need to make the training/test set split.

Suppose that researchers use an ensemble of heterogeneous treatment effect methods in

the training set and have identified either interesting CATEs or MCATEs. When turning

to the test set to make final inferences, there are asymptotic and bootstrap approaches to

uncertainty estimation. Once a set of strata are identified as the particular effects of interest,

inference procedures from targeted maximum likelihood estimation (TMLE) can be used,

where we “target” the CATEs and MCATEs. Specifically, an additional adjustment of the

estimation of the effect is made using an additional equation that measures the propensity

to be assigned to particular strata. Using an asymptotic argument Van der Laan and Rose

(2011) provide a closed form formula for estimating the standard error of the target parameter

and show that it is normally distributed, making it straightforward to create confidence

intervals.

The closed form for estimating the standard error from Van der Laan and Rose (2011)

is useful and provides a natural way to report standard errors, but there are reasons to

be concerned about the use of the TMLE asymptotic argument when estimating standard

errors for our estimators of MCATEs. The usual application of TMLE is to estimate the

5Of course, splitting the training and test in this way will undermine the power in both subsamples.
When deciding about how to assign units to the training and test set, researchers will have to decide how to
prioritize the discovery of heterogeneity in the training set relative to the precision of inferences in the test
set. If they are primarily interested in discovering heterogeneity at the expense of more precise inferences,
they should assign more units to the training set. If they are primarily interested in making precise inferences
at the expense of discovering heterogeneity in the training set, they should assign more units to the test set.
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main effect of an intervention in a large experiment. This large sample makes the asymptotic

argument more likely to hold. When estimating MCATEs, however, there are likely to be

few observations that will contribute directly to the estimate of the quantity of interest. The

result is that the estimate of the standard error may poorly approximate the true standard

error.

A second approach to inference is to use a bootstrap to estimate uncertainty in the

MCATEs (Efron and Tibshirani, 1994). The benefit of using a bootstrap to calculate uncer-

tainty is that it does not require asymptotic arguments in order to justify the uncertainty

measures. There are, however, several concerns with applying bootstrapping to make infer-

ences about MCATEs. First, the methods that comprise the ensemble make bias-variance

tradeoffs. The result is the methods intentionally include bias, so that bootstrapped con-

fidence intervals may not have the reported coverage rates. Second, several features of the

ensemble method we presented here need to be modified to ensure that regularity conditions

of the bootstrap are met. There are two separate concerns: if weights are estimated using a

constrained regression—as we have presented above—then that estimation process violates

the bootstrap regularity conditions. And several of the methods that comprise the ensemble,

such as the LASSO, violate the same regularity conditions. These problems are not, how-

ever, without solution. We can use a Bayesian procedure to estimate the weights attached

to the individual ensembles, such as the method presented in Montgomery, Hollenbach and

Ward (2012). And we can apply several of the recent advances in applying the bootstrap

to machine learning methods to obtain valid confidence intervals (Wager and Athey, 2015;

Chatterjee and Lahiri, 2011).

Given the limitations of both closed form and bootstrap methods, we report the informa-

tion that comprises our MCATEs using a different method. When we visualize the effects,

the size of each point will be proportional to the number of observations that are contributing

to the inference in the sense that they are proportional to the number of observations in that

stratum. We view this as a middle step between providing direct estimates of uncertainty—
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that are likely to be problematic—and failing to provide any guidance on the information

used to make an inference. Readers are then aware what effects are based on substantial

data and which effects depend primarily on model extrapolation.

4 Monte Carlo Simulations of Ensemble Based Meth-

ods

We use a series of Monte Carlo simulations to show the ensemble accurately estimates het-

erogeneous effects.6 The strong performance of the ensemble is not surprising, particularly

given ensemble methods strong performance at classification and prediction tasks (van der

Laan, Polley and Hubbard, 2007; Hillard, Purpura and Wilkerson, 2008; Raftery et al., 2005;

Montgomery, Hollenbach and Ward, 2012). Our simulations show that by evaluating meth-

ods’ predictive performance, ensembles attach greater weight to methods that provide better

estimates of the heterogeneous effects.7

We assess the performance of the ensemble across four distinct data generating processes,

averaging the performance of the ensemble over 5 instances of the data generating process.

The simulated data generating processes vary in the number of treatments that have system-

atic effects, the number of treatments that heterogeneous effects with the included covariates,

and the type of covariates that are included in the simulation. In two simulations, Monte

Carlo 1 and Monte Carlo 2 are sparse data generating processes—with many of the simu-

lated treatments specified to have an undetectable systematic effect and only a few specified

to have heterogeneous effects. Monte Carlo 3 and Monte Carlo 4, specify data generating

processes that are more dense—with more treatments having systematic (and large) effects

and heterogeneity across covariates. We provide specific details of each data generation

process in the online appendix.

We apply our complete ensemble method to each of the simulated data set. In the

6Replication of our monte carlo simulations and all other analyses are found in our replication code
Grimmer, Messing and Westwood (2017).

7This contributes to other simulation based evidence on the performance of ensembles on similar tasks
(see, for example, van der Laan, Polley and Hubbard (2007)).
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Monte Carlo simulations—and in our applications, below—we form an ensemble with nine

methods: (1) LASSO (Hastie, Tibshirani and Friedman, 2001); (2) Elastic-Net, with the

mixing parameter set to 0.5 (Hastie, Tibshirani and Friedman, 2001); (3) Elastic-Net, with

the mixing parameter set to 0.25 (Hastie, Tibshirani and Friedman, 2001); (4) Find It

(Imai and Ratkovic, 2013); (5) Bayesian GLM (Gelman et al., 2008); (6) Bayesian Additive

Regression Trees (BART) (Chipman, George and McCulloch, 2010; Green and Kern, 2012);

(7) Random Forest (Breiman, 2001; Wager and Athey, 2015); (8) KRLS (Hainmueller and

Hazlett, 2014); and a (9) Support Vector Machine (SVM) (Platt, 1998; Keerthi et al., 2001).

In the online appendix we provide details for each method’s estimation. After performing 10-

fold cross validation to generate predictions, we use Equation 3.4 to determine each method’s

weights. After estimating the weight we then apply the models to the entire sample and

create our ensemble estimate of the treatment effects implied by the data generating process

as a weighted average of the estimates from each of the component methods.

In addition to comparing the performance of our ensemble estimator to the component

methods, we will compare its performance to a näıve ensemble—where all methods are as-

sumed to contribute equally to the average. We measure the performance of the methods us-

ing the root mean square error of the estimated heterogeneous treatment effects (MCATEs),

with a smaller root mean square error implying more accurate estimates of the heterogeneous

effects.

The ensemble method outperforms the other methods across diverse data generating

processes in our Monte Carlo simulations. For ease of interpretation, Table 2 presents the

performance of each method in terms of the ratio of its root mean squared error to the root

mean square error of the ensemble estimate (van der Laan, Polley and Hubbard, 2007). If this

is greater than 1, then the ensemble has a smaller root mean square error, or performs better

in estimating the heterogeneous effects. To calculate the entries in Table 2 we first averaged

each method’s performance in five different iterations of the data generating processes and

averaged the weighted ensemble’s performance. We then took the ratio of the average mean
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square errors. In the online appendix we provide the MSE for each iteration of the monte

carlo simulations.

Consider the first two columns in Table 2, showing the results for the sparse data gener-

ation processes. Here, we see that methods that assume sparsity perform better—methods

such as LASSO. The ensemble outperforms these component methods, however, and is able

to more accurately estimate the heterogeneous effects. The third and fourth columns show

that methods that assume a dense set of effects and interactions perform better—such as

Elastic Net with α = 0.25, KRLS, and Bayesian GLM. Column 5 shows that, as a result, the

ensemble estimate has the best average performance across data generating processes and

iterations of the simulation. This exemplifies why ensembles are useful: because we never

actually know the data generating process, we do not know how well a particular method’s

assumptions fit the underlying causal effects (Hastie, Tibshirani and Friedman, 2001). Using

ensembles ensures that we use methods that reliably capture the heterogeneous effects for a

particular problem.

Figure 1 shows why the ensemble is able to outperform the constituent methods: the

methods with a smaller RMSE in estimating MCATEs tend to receive more weight in the

ensembles (van der Laan, Polley and Hubbard, 2007). Figure 1 presents the weight attached

to the constituent methods (vertical axis) against the method’s RMSE. This demonstrates

a simple relationship: methods with a smaller RMSE in estimating the MCATEs receive

greater weight in the final ensemble. Aggregated together, the methods with the best per-

formance receive the greatest weight.8

With this strong performance of the methods in mind, we turn now to our applications.

We use our methods to reveal how constituents reward legislators for securing money in the

district and how constituents punish legislators for budget deficits.

8The method is also able to perform well at identifying particularly responsive subsets of observations.
Following a simulation from Imai and Ratkovic (2013), we examined the method’s ability to correctly discover
the sign of the most responsive observations. Across different number of observations, the weighted ensemble
method was able to correctly discover the sign of the most responsive and three most responsive subsets.
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Table 2: Across Diverse Problems, the Ensemble Estimator Performs Best (Root Mean
Square Error of Each Method Relative to Root Mean Square Error of the Ensemble, Re-
ported)

Method MC 1 MC 2 MC 3 MC 4 Average
LASSO 0.99 1.08 1.34 1.25 1.18
Elastic Net (α = 0.5) 1.03 1.08 1.22 1.14 1.12
Elastic Net (α = 0.25) 1.58 1.26 0.95 1.26 1.23
Find It 1.09 17.74 1.75 25.47 14.66
Bayesian GLM 1.87 1.02 1.1 0.99 1.12
BART 1.08 3.16 1.36 3.65 2.68
Random Forest 4.99 2.05 2.96 2.25 2.64
KRLS 1.53 2.76 1.11 3.31 2.42
SVM-SMO 2.61 2.1 1.77 2.22 2.12
Naive Average 1.38 1.86 1.06 2.52 1.83

This table shows that the ensemble method outperforms other methods across diverse problems in
recovering the heterogeneous treatment effects. This table presents the mean square error for each method
averaged over 5 simulations of each data generating process, divided by the mean square error of the ensemble
method average over 5 simulations of each data generating process. In individual simulations the ensemble
method regularly outperforms the other methods. The right most column shows that, on average, the
ensemble estimator has the lowest mean square error across different problems, reflecting its utility as a
workhorse tool for estimating MCATEs.

5 Experiment 1: Rewarded For Type of Expenditure,

Not Money

Our first experiment reexamines an experiment with heterogeneous treatments and how

those treatments vary with respondent characteristics from Grimmer, Westwood and Messing

(2014). Grimmer, Westwood and Messing (2014) argue that legislators’ credit claiming

statements—a message that legislators use to create the impression they are responsible for

some government action—to receive credit for spending in the district and to cultivate a

personal vote (Mayhew, 1974; Grimmer, Westwood and Messing, 2014). The experiment

from Grimmer, Westwood and Messing (2014) analyzes how the content of a credit claiming

messages affect constituent credit allocation. In order to vary many of the features of the

experiment Grimmer, Westwood and Messing (2014) created a template that allows them to
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Figure 1: The Ensemble Tends to Place Greater Weight on Methods that More Accurately
Measure Heterogeneous Treatment Effects
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This figure shows that the ensemble method places more weight on methods that more accurately
measure the heterogeneous treatment effect. This occurs even though the method is weighting methods that
are performing better at out of sample prediction. This occurs because of the close connection between
estimating heterogeneous treatment effects and predicting out of sample.

vary several features of the message, while maintaining a coherent and realistic message from

a legislator. The original authors report marginal effects from the experiment. Our goal in

using an ensemble to reanalyze the experiment is to estimate the effects of heterogeneous

treatments for exploratory purposes—to identify instances of large scale variation that future

experiments could confirm.

Grimmer, Westwood and Messing (2014) assign participants to a control condition (with

a 10% chance) or the credit claiming condition (with a 90% chance). Participants in the

control condition read a press release from a fictitious representative who “announced that

17-year old Sara Fisher won 1st place in the annual Congressional art competition”. This

press release is an example of a common advertising press release—a message devoid of

policy content intended to increase the legislators’ prominence (Mayhew, 1974; Grimmer,

2013). The full text of the condition is in Table 3.

Participants assigned to the credit claiming condition read a message about an expendi-
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Table 3: Examining the Effects of Credit Claiming Statements on Constituent Credit Allo-
cation
Advertising Condition
Headline: Representative (redacted) announces annual Congressional district art com-
petition winner
Body: Representative (redacted) announced that 17-year old Sara Fischer won 1st place
in the annual Congressional district art competition. Sara’s winning art, “Medals” was
created using colored pencils. Rep. (redacted) said Sara’s artwork will be displayed in
the U.S. Capitol with other winning entries from districts nationwide.
Credit Claiming Condition
Headline: Representative (redacted) |stageTitle |moneyTitle |typeTitle
Body: Representative (redacted), |partyMain, |alongMain |stageMain |moneyMain
|typeMain.
Rep. (redacted) said “This money |stageQuote typeQuote”
|stageTitle:[will request/requested/secured]
|moneyTitle:[$50 thousand/$20 million]
|typeTitle : [to purchase safety equipment for local firefighters/to purchase safety equip-
ment for local police/to repave local roads, to beautify local parks/for medical equipment
at the local planned parenthood/to help build a state of the art gun range]
|partyMain : [Democrat/Republican]
|alongMain : [(No text)/and Senator (redacted), a Democrat/ and Senator (redacted),
a Republican]
|stageMain : [will request/requested/secured]
|moneyMain: [$50 thousand/ $20 million]
|typeMain: [to purchase safety equipment for local firefighters/to purchase safety equip-
ment for local police/to repave local roads, to beautify local parks/for medical equipment
at the local planned parenthood/to help build a state of the art gun range]
|stageQuote : [would help/would help/will help]
|typeQuote: [our brave firefighters stay safe as they protect our businesses and
homes/our brave police officers stay safe as they protect our property from criminals/keep
our roads in safe and working condition, ensuring that our local economy will continue
to grow/create parks that add value to the community and provide our children a safe
place to play/provide state of the art care for women in our community”/”provide local
residents and local, state, and national law enforcement officials a place to sharpen their
skills”]
Summary of Conditions
Funding Type:Planned Parenthood, Parks, Gun Range, Fire Department, Police,
Roads
Money: $ 50 thousand, $20 million
Stage : Will Requested, Requested, Secured
Who: Alone, a Senate Democrat, a Senate Republican
Party: Democrat, Republican
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ture in the district and the fictitious legislator’s role in securing that legislation. To assess how

different facets of the credit claiming process affects credit allocation Grimmer, Westwood

and Messing (2014) vary five different components of the message: (1) type of expenditure,

(2) amount of money, (3) stage in appropriations process, (4) collaboration with other legisla-

tors, and (5) representative’s political party. Varying the features of message simultaneously

allow us to identify the kind of information constituents use when evaluating credit claiming

messages, in a way analogous to recent conjoint experiments (Hainmueller and Hopkins, 2013;

Hainmueller, Hopkins and Yamamoto, 2014). Table 3 summarizes the conditions and how

the information was provided to participants in the study. In addition to the heterogeneous

treatments, we also examine how the effects vary across two relevant respondent character-

istics: respondent’s partisan identification—respondents classify themselves as a Democrat,

Republican, or Independent/Other—and ideological orientation—respondents classify them-

selves as Conservative, Liberal, or Moderate.

We examine the effect of legislators’ credit claiming efforts on constituents’ propensity to

Approve of the representative’s performance in office. Specifically, Grimmer, Westwood and

Messing (2014) asked participants if they “approve or disapprove” of the way the fictitious

representative “is performing (his/her) job in Congress”. Grimmer, Westwood and Messing

(2014) recruited 1, 074 participants on Amazon.com’s Mechanical Turk service, selecting

only workers from the United States.9 After respondents were assigned to a treatment

they completed a brief post-survey, that included questions about the legislator and the

respondent’s own personal political preferences.

Figure 2 shows the marginal average treatment effects (MATEs), averaging over the ac-

companying conditions and using the control condition for comparison. The vertical axis

shows the information varied in the experiments—including the different types of expendi-

tures, amount of spending, stage in the appropriations process, who announced the expendi-

ture, and the fictitious legislator’s party. The point is the marginal average treatment effect

9Grimmer, Westwood and Messing (2014) included attention checks at the start and end of the survey
to ensure that workers were not satisficing (Berinsky, Huber and Lenz, 2012).
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of that condition and the lines are 95 percent confidence intervals.

Figure 2: The Marginal Effects of the Credit Claiming Experiment

Treatment Effect
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This figure shows the marginal effects from the credit claiming experiment. Respondents appear to be
evaluating the credit claiming statement based on the type of message, but struggle to include other types
of information.

Figure 2 suggests that participants are able to make use of easily available information—

such as the type of expenditure—but struggle to include other types of information in their
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evaluation of credit allocation. The type of expenditure matters considerably—gun ranges

decrease approval for representatives (13.1 percentage point decrease, 95 percent confidence

interval [-0.25, -0.01]), but other types of projects legislator increase approval over the con-

trol condition (37 percentage point increase, 95 percent confidence interval [0.29, 0.46]).

Other information, however, has a smaller effect on constituent credit allocation. There is

essentially no difference in the credit awarded legislators if they claim credit for $50 thou-

sand or $20 million, who legislators announce with, or whether the legislator is a Democrat

or Republican. Securing money does cause an increase in support, relative to stating that

the legislator will request or requested the money, with securing causing an 8.1 percentage

point great increase in support than requesting or stating an intent to request (95 percent

confidence interval [0.02, 0.15]).

The effects in Figure 2 suggest that participants are evaluating legislators’ credit claim-

ing efforts by evaluating the type of expenditure, while struggling to use other information.

If true, then how participants evaluate the type of expenditure will depend on their parti-

sanship and ideology. This is clearest for two of the more polarizing types of expenditures

Grimmer, Westwood and Messing (2014) included: a gun range and funding for planned

parenthood. Liberal elites and Democrats tend to vigorously defend planned parenthood,

providing cues to like minded citizens that the organization provides valuable services. In

contrast, conservatives and Republicans oppose planned parenthood, often working to strip

the organization of money (For example, (Kasperowicz, 2013)). Very different cues are

available about gun ranges. Many Democrats—particularly liberal-urban Democrats—have

argued for increased gun regulation. Republicans and conservatives have argued vigorously

for constitutional protection of guns.

To examine how the message content affects credit allocation across participants with

different partisan identifications and ideological orientation we use our ensemble method.10

10Together our experiment has 6×2×3×2×3 + 1 conditions—a very heterogeneous treatment, along with
the 9 unique partisan and ideological characteristics. Given our sample size limitations, we examine only
pairwise interactions between our treatments in our method—reducing the number of potential conditions
from 217 to 98 total conditions. This is a decision that we made balancing the desire to discover heterogeneity
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We apply the ensemble method using 10-fold cross validation, then use Equation 3.4 to

estimate the weights attached to each method. The first column of Table 4 shows the weights

attached to each method for the ensemble used to generate the effects for this experiment.

Three methods receive non-zero weight: LASSO (0.62), KRLS (0.24), and Find It (0.14).

In generating the final effects, we compare all treatment effects to the control advertising

condition.

Table 4: The Weight Attached to Methods Varies Across Experiments

Method Credit Allocation Deficit Punishment
LASSO 0.62 0.00
Elastic Net (α =0.5) 0.00 0.00
Elastic Net (α = 0.25) 0.00 0.00
Find It 0.14 0.10
Bayesian GLM 0.00 0.00
KRLS 0.24 0.81
SVM-SMO 0.00 0.09

Figure 3 shows how the effect of the type of project claimed depends on the participant’s

partisan and ideological identification. On the right-hand side vertical axis we vary the type

of expenditure announced and within each type of expenditure we vary participants ideolog-

ical orientation and partisan identification. To ease interpretation and facilitate exploration,

we draw lines to connect the heterogeneous responses to the same type of expenditure.

Figure 3 reveals substantial heterogeneity in the effect of the type of project on con-

stituent credit allocation, consistent with constituents evaluating the type of expenditure

when evaluating legislators’ credit claiming statements. Consider the response to money di-

rected to planned parenthood. Liberal respondents, regardless of partisan affiliation, boost

support for the representative who claims credit for securing money for planned parenthood.

The fictitious legislator claiming credit for funds for planned parenthood caused a 30 per-

centage point increase in approval rating for liberals. Conservatives, however, have a more

muted—and even negative—response to legislators who claim credit for planned parenthood

with the limits of our sample size.
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spending. Indeed, claiming credit for money delivered to planned parenthood causes a de-

crease in approval ratings among independent conservatives and only a small increase among

other conservatives. Of course, our visualization shows that there are few conservatives in our

MTurk sample, leading us to have some caution in interpreting the findings for conservatives.

The effect of claiming credit for gun ranges also varies across participants. Constituents

who are likely to have a negative attitude about guns have a strong negative reaction to

legislators claiming credit for a new gun range. Claiming credit for a gun range causes an

over 30 percentage point decline in a legislators’ approval rating among liberal Democrats.

But constituents who are likely to have a less negative view of guns have a more muted

response to the gun range: claiming credit for a gun range causes only a 5 percentage point

decline among conservative Republicans. But again, note the small sample of conservative

Republicans in our MTurk sample. Conservatives and Republicans do not, however, simply

have a smaller magnitude to all credit claiming efforts. Claiming credit for delivering money

to police causes a 21 percentage point increase in approval among Republicans, while only

an 11 percentage point increase among Democrats and independents.

The heterogeneity in response to the type of credit claiming message is consistent with

constituents evaluating the type of expenditure when allocating credit for spending in the

district. Figure 4 shows that constituents tend to be less responsive to other pieces of in-

formation in the credit claiming statements. The left-hand plot in Figure 4 shows how the

effect of the type of project and the amount of money (right-hand vertical axis) for the

project varies across constituent ideology. This figure shows that constituents—across types

of expenditure and ideological orientation—are largely unaffected by the amount claimed.

Indeed the parallel lines are indicative of constituents who are largely unable to incorporate

information about the size of the expenditure into their overall evaluations. Consistent with

evidence from Grimmer, Messing and Westwood (2012), the size of the expenditure appears

to matter little when constituents are allocating credit to legislators. The right-hand plot

in Figure 4 shows how the effect of credit claiming messages varies across type of money
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Figure 3: Constituent Partisanship and Ideology Predicts Differences in the Effectiveness of
Credit Allocation

Treatment Effect
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This figure shows substantial heterogeneity in how participants respond to the different types of money
legislators claim credit for securing.
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Figure 4: The Money Secured or the Stage in the Process Appears to be Less Important

Treatment Effect
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This figure shows that constituents struggle to include information about the amount of money legislators
claim credit for securing (left-hand plot) or the stage in the process that the money is in (right-hand plot).
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secured and stage in the appropriations process (right-hand vertical axis) and constituents’

ideological orientation (left-hand vertical axis). While there is evidence that constituents do

reward the fictitious legislator slightly more for securing rather than requesting money, the

increase from having secured an expenditure appears to be much smaller than the hetero-

geneity across the type of expenditure.

This section uses the ensemble method for estimating heterogeneous treatment effects to

explore the types of information constituents use when responding to legislators’ credit claim-

ing messages. This shows that constituents tend to evaluate easily available information—

such as the type of money secured—but struggle to include information about the amount

that legislators secured. Together, this shows how the ensemble of heterogeneous treatment

effect methods can be used as an exploratory tool—to identify how the components of the

messages vary across respondents. To validate this exploration, additional experiments could

be run that explicitly test the heterogeneity discovered here along with a pre-analysis plan,

ensuring that our exploration is not biasing the inferences we make (Humphreys, Sanchez

de la Sierra and van der Windt, 2013).

5.1 Experiment 2: Punishment for Budget Deficits

Several studies argue that legislators claim credit for spending to cultivate a personal vote

with constituents. Yet, in recent years a growing movement of conservatives, the Tea Party,

has criticized expenditures as wasteful (Skocpol and Williamson, 2011). Grimmer, Westwood

and Messing (2014) design an experiment to assess how the criticism of government spending

affects how constituents allocate credit. Grimmer, Westwood and Messing (2014) show

that labeling an expenditure as contributing to the budget deficit undermines the credit

legislators’ receive. We apply the ensemble method to assess how the effect of the criticism

varies across constituent characteristics—revealing that the effect of budget criticism varies

substantially, depending on constituents’ ideological orientation. While the previous example

shows how the method can be used to estimate the effect of heterogeneous treatment, this

example focuses on how the method can be used to estimate the heterogeneous effect of a

29



relatively simple intervention.

Grimmer, Westwood, and Messing’s (2014) experiment couples a legislator’s claiming

credit for an expenditure with criticism about the budget implications of the spending. For

realism about the magnitude of the effects, this experiment utilizes participants’ actual rep-

resentatives, rather than fictitious representatives used in the first study. Table 5 contains

the content of the experiment’s three conditions. In the credit claiming condition partic-

ipants are presented with their house member claiming credit for an $84 million highway

expenditure in their Congressional district. To customize the paragraph about each partici-

pant’s legislator, Grimmer, Westwood and Messing (2014) insert the representative’s name

at |representativeName and the participant’s state at |state in the text.

Two budget criticism conditions vary the source of the information about how the spend-

ing will affect the federal deficit. The CBO Budget Information condition includes this same

credit claiming about a highway expenditure, but pairs it with information about the budget

consequences of the expenditure from the non-partisan Congressional Budget Office (CBO).

This condition has an official statement from the CBO, which includes the overall cost of the

program and that expenditure would be deficit spending. In the Partisan Information con-

dition, participants receive budget information from a political figure likely to criticize the

participant’s member of Congress: the opposing party’s national chairperson. Participants

with a Democratic representative see a statement from Reince Priebus—chair of the Repub-

lican national committee—and participants with a Republican member of Congress see a

statement from Debbie Wasserman-Schultz—chair of the Democratic national committee.

Grimmer, Westwood and Messing (2014) administered the experiment to 1,166 partici-

pants, using a census matched US sample from a Survey Sampling International (SSI) panel.

Participants were assigned to conditions, the treatments were administered and then a post-

survey was administered. Grimmer, Westwood and Messing (2014) shows that the budget

criticism have a strong and negative effect on legislators’ approval ratings. The budget in-

formation from the CBO causes an overall decrease of 8.2 percentage points (95 percent
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Table 5: Content Across Conditions, Experiment 2

Headline: Representative |representativeLastName Announces $84 Million for Local
Road Projects
Body: Representative |representativeName (|party - |state) announced that the De-
partment of Transportation Federal Highway Administration has released $84 million
for local road and highway projects. Representative |representativeName said ‘I am
pleased to announce that we will receive $84 Million from the Federal Highway Ad-
ministration. It is critical that we support our infrastructure to ensure that our roads
are safe for travelers and the efficient flow of commerce.’ This funding will add lanes
to |state highways.
CBO Budget Information: The nonpartisan Congressional Budget Office reported
that the spending bill is wasteful and contributes to the growing federal deficit. “This
bill contributes to federal spending without identifying a new source of revenue or
off-setting budget cuts. Accounting for the total cost of this program across all
Congressional districts, the bill costs taxpayers $36.5 billion, all of which is added to
the deficit and compounded with interest.”
Partisan Information: [Debbie Wasserman-Schultz, Chair of the Democratic Na-
tional Committee/Reince Preibus, Chair of the Republican National Committee] said
that the spending bill is wasteful and contributes to the growing federal deficit. “This
bill contributes to federal spending without identifying a new source of revenue or
off-setting budget cuts. Accounting for the total cost of this program across all Con-
gressional districts, the bill costs taxpayers $36.5 billion, all of which will be added
to the deficit and compounded over time with interest.”
Key
|representativeName: Representative’s name
|party: Representative’s party
|state: Represenative’s state

confidence interval [-0.16, -0.01]) and the partisan information causes a similar overall de-

crease in approval of 7.7 percentage points (95 percent confidence interval [-0.15, -0.00]).

To examine how the effects of the intervention vary across constituent and legislator

characteristics, we apply the ensemble method to the experiment. Table 4 shows the diverse

methods that receive weight for this experiment: including KRLS (0.81), Find It (0.10), and

SVM (0.09). We then use the ensemble to compute marginal conditional average treatment

effects for combinations of respondent characteristics and particular treatments, with all
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effect sizes based on a comparison to the credit claiming message without criticism.

Table 6: Characteristics of Constituents with the Most Negative Response to Budget Criti-
cism for Democrat and Republican Representatives

Democrat Representatives, Most Negative Response
Effect Education Income Age Gender Race Ideology Party
-0.36 High School $50k-$80k 50-63 Female White Cons. Dem.
-0.36 High School $50k-$80k 64 + Female White Cons. Dem.
-0.36 Grad. Degree $50k-$80k 50-63 Female White Cons. Dem.

Democrat Representatives, Most Positive Response
Effect Education Income Age Gender Race Ideology Party
0.28 College < $50k 36-49 Male White Strong Lib. Strong Dem.
0.27 College < $50k 36-49 Female White Strong Lib. Strong Dem.
0.27 College < $50k < 37 Male White Strong Lib. Independent

Republican Representatives, Most Negative Response
Effect Education Income Age Gender Race Ideology Party
-0.32 College < $50k 50-63 Male Non-white Strong Cons. Strong Rep.
-0.32 College $50k-$80k 50-63 Male White Strong Cons. Strong Rep.
-0.31 College < $50k 50-63 Male White Strong Cons. Strong Rep.

Republican Representatives, Most Positive Response
Effect Education Income Age Gender Race Ideology Party
0.25 College < $50k < 37 Male White Moderate Republican
0.24 College < $50k < 37 Male White Moderate Republican
0.24 College < $50k < 37 Female White Moderate Republican

Following Imai and Strauss (2011) and Imai and Ratkovic (2013), we first use the ensem-

ble method to assess the constituents who have the most negative and positive response to

the criticism. Table 6 show who has the most negative and positive response to the budget

criticisms for Democratic and Republican representatives. The most negative responses for

both Democratic and Republican representatives come from constituents who identify as

conservative—strong conservatives for Republican representatives, conservatives for Demo-

cratic representatives. For Democratic legislators the most positive response comes from

strong liberals who are also strong Democrats—the most positive response for Republican

representatives is from moderate Republicans.

Table 6 reveals who has the strongest response to the budget criticism treatment, sug-

gesting that conservatives are particularly likely to punish legislators for deficit spending and
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that strong liberals are particularly likely to reject the criticism. To examine how the effect

of the criticism varies across different types of respondents, Figure 5 shows how the effect of

the budget criticism affects credit allocation for Democratic (left-hand plot) and Republican

representatives (right-hand plot) and for constituents with varying ideological orientations

(strong liberal, liberal, moderate, conservative, strong conservative) and partisan affiliations

(strong Democrat, Democrat, Independent, Republican, strong Republican). This figure

shows that strong liberals—particularly strong liberals with a Democratic representative—

tend to have a positive response to the budget criticism. This aligns well with cues from

political elites, who have suggested that deficit spending does less harm than members of

the political right emphasize. Further, moderate Republicans appear unaffected by infor-

mation about spending’s budget implications. Conservatives, however, have a particularly

negative response to learning about the budget implications of an expenditure. And as Table

6 illuminates, strong conservatives have a particularly negative response to the criticism.

The variation in response to the budget criticism aligns with intuition about how Tea

Party rhetoric affects how constituents respond to budget criticism. For participants likely to

be receptive to the rhetoric—conservatives—the budget criticism causes sharp punishment

of the elected official. But for other constituents, the budget criticism is ineffective. Strong

liberals–who have likely learned of the arguments for deficit spending—are unperturbed by

the criticism and continue allocating credit to legislators for spending—in some cases greater

expenditures. Together, the heterogeneity in response illuminates how critical rhetoric can

make it costly for Republicans to claim credit for spending, because they depend on the

support of strong conservatives in the primary. Democrats, however, do not have the same

costs, because the most ideological members of their base—strong liberals, have a positive

response to the budget criticism.

6 Conclusion

We have shown how weighted ensembles of methods provide reliable estimates of heteroge-

neous treatment effects. Across diverse problems the ensemble is able to provide accurate
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Figure 5: Strong Liberals are Unresponsive to Budget Criticisms
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This figure shows how the response to budget criticism depends on constituents’ characteristics (left-hand
vertical axis). For both Democrats and Republicans (right-hand vertical axis), we see that Strong liberals
are unresponsive to the budget criticism, or the criticism may cause an increase in legislators’ approval
ratings. Strong conservatives, however, a much more negative reaction to the credit claiming efforts. This is
consistent with the rise of the Tea Party movement.

estimates, because it attaches more weight to methods that provide more accurate estimates

for the particular task. Then applying the weighted ensemble to two experiments, we show

how respondents evaluate easy to obtain information when accessing a legislators’ credit

claiming statement and the substantial ideological variation in how participants punish, or

reward, legislators for deficit spending.

We have shown how ensembles provide accurate and reliable estimates of heterogeneous

treatment effects across diverse problems. Ensembles do not, however, obviate the need for

developing new methods for estimating heterogeneous effects. Quite to the contrary, the
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ensembles only work because of the impressive innovations of the constituent methods. New

innovations in the estimation of heterogeneous effects, then, will improve the performance

of the ensemble estimates.

Far from replacing individual methods, then, ensemble estimates of heterogeneous effects

provide a way to make use of the impressive new innovations in the estimation of heteroge-

neous effects. By pooling together the methods, we make the most of new methods and the

new experimental data.
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